

We Bring Innovation to Transportation

Long-term Oven Aging Protocols for Cracking Performance Evaluation of Asphalt Mixtures in Virginia

llker Boz, Ph.D.

Virginia Transportation Research Council Virginia Asphalt Association – Mid-Atlantic Asphalt Expo Wednesday December 6th, 2023, Richmond, VA

Research Team

- Ilker Boz, Ph.D.
- Jhony Habbouche, Ph.D., P.E.
- Stacey Diefenderfer, Ph.D., P.E.
- Elie Hajj, Ph.D.

University of Nevada, Reno

Background

- Laboratory testing of asphalt mixtures
 - Ensure asphalt mixtures meet specified quality and performance
- Laboratory testing procedures involve conditioning
 - Short-term mixture oven conditioning (aging) pre-compaction
 - > Allow for binder absorption during the mix design and simulate plant mixing
 - Volumetric mixture design
 - Mechanical property (performance) testing
 - Long-term mixture oven conditioning (aging) post-compaction
 - Simulate aging of asphalt mixtures in service anywhere from 1 to ? years
 - Mechanical property (performance) testing

3

BMD Performance Tests & Criteria

□ A and D surface mixtures with 9.5mm and 12.5mm NMAS

Testing on specimens from <u>short-term oven aged</u> mixtures only

Durability Cantabro Test CML ≤ 7.5 % Rutting Asphalt Pavement Analyzer Test RD ≤ 8.0 mm IDT-HT Test Wet Strength ≥ 100 kPa

Cracking Indirect Tensile Cracking Test CT index ≥ 70 (reheats) CT index ≥ 95 (non-reheats)

Moisture Damage Tensile Strength Ratio Test

• AASHTO R30

Oven aging of compacted specimens at 85°C for 5 days

- A single prescription for all conditions
- Aging gradient increased variability for laboratory testing
- Specimen integrity problems
- Practicality

- NCHRP Project 09-54
 - Oven aging of loose asphalt mixture specimens at <u>95°C</u> at climatedependent oven-aging durations to match 4, 8, and 16 years of field aging at depths of 6 mm, 20 mm, and 50 mm below the pavement surface.
 - Overestimation for the mixtures with high recycled/modified components
 - Practicality (in some cases)

• NCHRP 09-54 for Virginia - Targeting 8 Years of Field Aging

Virginia Aging Boundary	Below Surface	6 mm	20 mm	50 mm	
	Field Aging (Years)	Oven Aging at 95°C (Days)	Oven Aging at 95°C (Days)	Oven Aging at 95°C (Days)	
Min	4	2	1	1	
	8	5	2	1	
	16	10	4	2	
Max	4	4	2	1	
	8	8	4	2	
	16	17	8	5	

- Elevated Temperatures
 - Oven aging of loose asphalt mixture specimens at elevated temperatures (e.g., 120°C, 135°C, and compaction temperature)
 - Potential issues with certain binders
 - Potential issues with "long" aging durations

8

• Elevated Temperatures

	Below Surface	6 n	nm	20	mm	50 mm	
Virginia Aging Boundary	Field Aging (Years)	Oven Aging at 95°C (Days)	Oven Aging at 135°C (Hours)	Oven Aging at 95°C (Days)	Oven Aging at 135°C (Hours)	Oven Aging at 95°C (Days)	Oven Aging at 135°C (Hours)
	4	2	5.8	1	3.8	1	3.8
Min	8	5 <u>11.8</u>		2	5.8	1	3.8
	16	10	<u>21.9</u>	4	9.8	2	5.8
	4	4	9.8	2	5.8	1	3.8
Max	8	8	<u>17.9</u>	4	9.8	2	5.8
	16	17	<u>35.9</u>	8	<u>17.9</u>	5	<u>11.8</u>
						•	9

Background Important Note

□ Short-term oven aging – different procedures

- > 2 hours at 116°C for WMA and 135°C for HMA (AASHTO R30)
- > 2 hours or 4 hours at compaction temperature (VDOT)
 - > APA/IDT-HT/Cantabro/Volumetrics: 2 hours at compaction temperature
 - > IDT-CT: 4 hours at compaction temperature
- > No short-term oven aging for plant-produced mixtures
- Long-term oven aging preceded by short-term oven aging
 No short-term oven aging for plant-produced mixtures

Objectives

- Develop <u>practical</u> long-term oven aging protocols for BMD mixes that can be used in mix design verification and production of asphalt mixtures for quality control and acceptance purposes
- Develop preliminary performance criteria for CT index for the to-be-developed long-term aging protocols

Wait! Why is this just for IDT-CT, but not for other tests?

Compaction Temperature!

- 10 different plant-produced mixtures and raw materials
- Field cores from 2015 sections

Results: IDT-CT Testing

• Long-term aging at 95°C (after 4 hours at compaction temperature)

Results: Example Data

 $G-R = \frac{G^*(\cos \partial)^2}{2}$

sin∂

Results: Virgin Binders

- - Onset of Cracking
 - Signifcant Cracking
- $- G^*/sin(delta) \ge 2.2 \text{ kPa}$
- $-\cdots$ G*sin(delta) \leq 5,000 kPa
- Original (1035)
- □ RTFO (1035)
- PAV20 (1035)
- □ PAV40 (1035)
- Original (1038)
- © RTFO (1038)
- ◎ PAV20 (1038)
- ⊖ PAV40 (1038)
- ▲ Original (1039)
- △ RTFO (1039)
- ▲ PAV20 (1039)
- △ PAV40 (1039)

Results: Recovered Binders

-Signifcant Cracking $G^*/sin(delta) \ge 2.2 \text{ kPa}$

-Onset of Cracking

- $G*sin(delta) \le 5,000 \text{ kPa}$
 - 2H_0D (1035)
- 4H 0D (1035)
- 4H 1D (1035) П
- 4H_2D (1035)
- 4H_4D (1035)
- 2H 0D (1038)
- 4H_0D (1038) Ο
- 4H_1D (1038)
- 4H 2D (1038) θ 4H_4D (1038)
- 2H_0D (1039)
- 4H_0D (1039)
- 4H 1D (1039)
- 4H_2D (1039) Δ 4H 4D (1039)

◬

Results: G-R vs Delta Tc

Virgin Asphalt Binders

Results: G-R vs CT Index

Findings

1.00					Recov	ered A	sphalt I	Binders				
160)])					□22	2-1035	022	-1038	△ 22-103	39
120)											
× 100	í 🗠											
	'[
<u> </u>	2	\mathbf{b}	i								 	
5 60)											
40)											
20)					0					0	
20	(
U	,		500	1	000	1	500	2.00	0 7	500	2 000	2.50
	1.0E+09										 Onset of Cracki Signifcant Crack 	ng king
		N							/		$G^*/sin(delta) \ge$	2.2 kPa
	1.0E+08	Δ_{i_1}							/:		$G^*sin(delta) \leq 5$	5,000 kPa
(Pa)	1.0E+07		···						/;	•	Original (1035)	
id/sec								~;;	, <u> </u>		RTFO (1035)	
005 13	1.0E+06						<u></u>				PAV20 (1035)	
nd 0.	1.0E+0.5					:	1	4		•	Original (1033)	
0.001	1.02.403	1						∆ ⊠n		0	RTFO (1038)	
at 15	1.0E+04	1,-						-0	1 .	0	PAV20 (1038)	
ů.		ť								Θ	PAV40 (1038)	
	1.0E+03										Original (1039)	
	1.0E+02	1								Δ	RTFO (1039)	
) 1	0 20	D 30	40	50	60	70	80 9	Δ (PAV20 (1039)	

Phase Angle (°)

- For CT index of 71.04 (GRP of 180 kPa): Duration=0.26 days
- For CT index of 42.8 (GRP of 600 kPa): Duration=1.41 days •

▲ PAV40 (1039)

Recovered							
	Onset of	Significant					
	Cracking	Cracking					
22-1035	4H_0D	4H_1D					
22-1038	4H_0D	4H_1D					
22-1039	4H_1D	4H_2D					
Virgin							
22-1035	PAV 20	-					
22-1038	PAV 20	PAV 40					
22-1039	-	-					

Work in Progress

- Verify the findings with additional data
- Identify equivalent aging conditions at elevated temperatures (i.e., 135°C and/or compaction temperature)
- Perform fundamental tests
- Perform Mechanistic-Empiric analyses
- Correlate laboratory aging to field aging (field cores)

Thank You! Questions?

Email: ilker.boz@vdot.virginia.gov

