

Adjusting Mixtures to Meet BMD

How do we get from here...

Or how do we fix this?

National Center for Asphalt Technology Job-Mix Formula

at AUBURN UNIVERSITY

NCAT Project ID:	TT 2021 Additive Group Phase I	NCAT Mix ID:	Phase I Control Mix
Principal Investigator:	Buzz Powell	Mix Design Engineer:	Nathan Moore
		Design Completion Date:	11/19/2020
Mix Type:	Dense-Graded Superpave	Virgin Binder Grade:	PG 76-22
Nom. Max Agg. (NMAS):	12.5mm (1/2")		

AASHTO Superpave Volumetric Mix Design

	Cold Feed %	Aggregate	Description	Source		Gsb	Gsa	% Abs.
	26	Gran	nite 78's			2.627	2.674	0.7
	25	Gran	nite 89's			2.601	2.679	1.1
	28	Manufa	ctured Sand			2.639	2.662	0.3
	20		RAP			2.632	2.680	0.7
	1	Bagho	use Fines	NCAT		2.644 2.683		0.5
		Job Mix		Volumetric Information		Aggregate Information		nation
	Sieve S	ieve	% Passing	% Total AC Required	5.60	Agg. Bulk Gravit	ty (Gsb)	2.627
	1 1/2"	(37.5 mm)	100.0	Max Spec. Gravity Mix (Gmm)	2.453	Agg. Effective G	ravity (Gse)	2.672
	1"	(25 mm)	100.0	Bulk Spec. Gravity Mix (Gmb)	2.344	Agg. Apparent (Gravity (Gsa)	2.674
	3/4"	(19.0 mm)	100.0	Design Air Voids (Va)	4.4	Agg. Absorption	n (Abs)	0.66
	1/2"	(12.5 mm)	98.3	VMA	15.9	Coarse Agg. An	gularity (1)	100 assumed*
	3/8"	(9.5 mm)	89.2	VFA	71.8	Coarse Agg. An	gularity (2+)	100 assumed*
	#4	(4.75 mm)	55.0	Dust/Asphalt Ratio	0.89	Fine Agg. Angul	arity (FAA)	45
	#8	(2.36 mm)	41.1	Effective AC (Pbe)	4.98	Flat and Elonga	ted 5:1 (F & E)	C
	#16	(1.18 mm)	32.7	Absorbed AC (Pba)	0.66	Sand Equivalen	cy (SE)	98
	#30	(600 µm)	22.4	% AC Contribution from RAP	1.15		Other Informat	ion
	#50	(300 µm)	11.7	% AC Contribution from RAS	0.00	Ndes Gyrations		60
	#100	(150 µm)	6.7	% Virgin Binder	4.45	Design Sample	Mass, g	4700
	#200	(75 µm)	4.45	% Recycled AC Replacement	20.5	Mix Ign CF		-0.29
ſ	100							

Presentation Outline

What mix design variables can be changed to improve

- Rutting resistance
- Cracking resistance
- Moisture susceptibility

Asphalt Pavement Performance

What can we actually control?

What mix design variables affect performance?

<u>Binder</u>

- Binder content
- Binder grade
- Crude source
- Anti-strip
- Additives

Aggregate

- Gradation
- Angularity
- Strength

Interaction between

variables

• Dust

Recycled

- RAP content
- RAS content
- Binder grade
- Plastics
- Rubber
- Fibers

Rutting

- Adjusting aggregate gradation
- Using a stiffer asphalt binder
- Polymer modification
- Lowering asphalt content
- Increasing recycled materials content
- Adding fiber additives

- Factor: binder content
- Hamburg Wheel Tracking Test (HWTT)

- Factor: binder grade
- Asphalt Pavement Analyzer

Binder Type	APA Rut Depth (mm)
PG 64-22	3.8
PG 70-22	2.4
PG 76-22 (SBS)	1.4

12.5 mm NMAS Virgin Mix

(Data from Zaniewski, 2003)

- Factors: RAP content, binder content
- HWTT

	HWTT Rut Depth (mm)			
Binder Content	35% RAP mix, PG 64-34 binder	45% RAP mix, PG 64-34 binder		
4.3%	3.0	2.4		
4.8%	4.0	3.2		
5.3%	4.7	3.8		

- Factor: Coarse Aggregate Type
- Hamburg Wheel-Tracking Test (HWTT)

Agg Type	HWTT Rutting (mm)
Natural Gravel	8.7
Limestone	7.1

19% RAP Mix PG 58-28 5.8% AC

Cracking

- Increasing asphalt content or V_{be}
- Lowering recycled materials content
- Using a softer (better quality) asphalt binder
- Adding a rejuvenator or other additive
- Change crude source

- Factor: binder content
- Indirect Tensile Asphalt Cracking Test (IDEAL-CT)

- Factor: Volume of Effective Binder (V_{be}) @ Ndes
- IDEAL-CT

20% RAP Mix

PG 76-22

- Factors: RAP content
- IDEAL-CT & Hamburg Wheel Tracking Test (HWTT)

	Laboratory		
RAP Content	IDEAL-CT	HWTT Rutting (mm)	PG 70-28 4.7 – 5.0% AC
0%	124	5.6	
15%	77	3.0	
30%	37	2.1	National Center for

- Factor: rejuvenator dosage
- IDEAL-CT

Rejuvenator Dosage	CT _{index}
No rejuvenator	21.1
Low	38.1
Medium	44.1
High	42.2

45% RAP Mix PG 64-22 5.2% AC

- Factor: softer binder
- I-FIT

Low-tomporaturo	Flexibility Index		
PG	4h@135C on loose mix	5d@85C on loose mix	
xx-22	4.0	1.7	
xx-28	5.8	3.0	
xx-34	9.0	5.1	

(Data from Bonaquist, 2016)

- Factor: Coarse aggregate source
- IDEAL, I-FIT, & DCT

Aggragato		Lab	ooratory Res		
	Type	IDEAL-CT	I-FIT	DCT (J/m ²)	PG 58-28
	Natural Gravel	83	12.1	597	5.3% AC
	Limestone	64	7.4	361	

Stripping

- Changing binder source
- Changing aggregate type
- Adding/changing an anti-strip agent

Stripping: Case Study 1

- Factor: binder source
- HWTT

Binder Source	HWTT Rut Depth at 20k Passes	15% RAP Mix
Source A	3.0 mm	PG 76-28
Source B	> 12.5 mm	5.6% AC

Stripping: Case Study 2

- Factor: liquid anti-strip additive
- Tensile Strength Ratio (TSR)
- Virgin mix, granite aggregate (with known stripping issues), 5.4%
 AC

Liquid Anti-strip	TSR
No Anti-strip	0.26
+ Product A	0.67
+ Product B	0.85

Factors to Consider for Design Optimization

Performance

Cost

Material Availability

Closing Remarks

- "When faced with a problem with multiple solutions, begin with the simplest approach first"
- Example: Failing mix design. Need 15 more CT_{Index} units
 - Are data repeatable? Do they make sense based off of historical results?
 - Change gradation? RAP source? Aggregates?
 - Identify different binder source? Binder grade? Decrease RAP content?
 - Additives, Fibers, Oils, Recycling Agents (These are not bad!)
 - What is the simplest/cheapest approach that gets the job done?

NCAT Test Track Conference – May 7-9, 2024

Thank you! Questions?

December 6, 2023 Nathan Moore, P.E.

National Center for Asphalt Technology (NCAT)

National Center for Asphalt Technology NCAT AT AUBURN UNIVERSITY