

We bring innovation to transportation.

Managing Mix Performance With BMD

Stacey Diefenderfer, Ph.D., P.E. Virginia Transportation Research Council December 6, 2023

VDOT 2024 BMD Criteria

Distress	Test	Limit
Cracking	IDT-CT (reheat)	70 (min)
	IDT-CT (non-reheat)	95 (min)
Rutting	APA rut test	8mm (max)
	IDT-HT (wet)	report only 100kPa (min)
Durability	Cantabro	7.5% (max)
Moisture	Tensile Strength Ratio	80% (min)

What is a Balanced Mix?

BMD for Specific Traffic & Structure

- Identify distress of concern
- Match mix performance requirements to conditions
 - Minimal traffic, average loading aging, top-down cracking
 - Heavy traffic, heavy loading rutting, fatigue cracking
 - Thin pavements fatigue cracking
 - Thick pavements top-down cracking
 - Intersections rutting, shoving

Designing a Balanced Mix

- Start with good aggregate structure
 - Communicate with quarry be aware of changes/variability
 - Bailey Method develop, evaluate, & adjust aggregate blend
 - Evaluate gradation curves for sensitivity of volumetrics changes in JMF
- Know your binder source and quality
 - Same PG ≠ same performance in BMD
 - Crude source & refining process impact binder quality
 - Can be differences in same PG among suppliers

Designing a Balanced Mix (2)

- Know your RAP
 - Binder content & grade
 - Gradation do you / can you fractionate
 - Accurate G_{sb-RAP}

Balancing an Unbalanced Mix

- Where is mix lacking?
 - Durability / cracking resistance
 - Rutting resistance
 - Moisture susceptibility
- Can mix be balanced?
 - How close to / far from performance thresholds
 - How close to volumetric thresholds
 - How sensitive is the mix to changes
 - Gradation
 - Binder content

General Practices

- Use systematic process for changes
 - One change at a time
- Bailey method impact of aggregate properties on Pbe
 - Aggregate shape
 - Aggregate surface texture
 - Aggregate packing or structure
- Compare plant gradations to cold feed gradations
 - P200 & aggregate breakdown are important

General Practices

- Emphasize VMA
 - Exceeding minimum VMA is beneficial, but do not unreasonably exceed minimum VMA
- Adjustments causing significant impact on volumetrics may have significant impact on one performance test & little/no impact on another performance test

Balancing for Rutting Resistance

- Restrict Pbe
- Increase the binder grade
 - recycled materials
 - polymer modification
- Reduce the VMA by trying other gradations
- Reduce or remove dust &/or natural sand
- Increase aggregate angularity of sand sized materials
- Evaluate impact of dust particle size

Balancing for Durability/Cracking Resistance

- Adjustments are mix type dependent
 - No one answer or mix adjustment for all cases
- Add more binder
 - Volume of binder is governing factor in load-related cracking
 - If cannot add binder due to low air voids, may need to use washed aggregates during production or different aggregate
- Increase VMA
 - target 0.5 1.0% higher than minimum
- Increase VFA

Balancing for Durability/Cracking Resistance (2)

- Reduce air voids
- Manage binder stiffness
 - Look at RAP/RAS content & impact on virgin binder PG
 - Increased RAP → may need softer binder or recycling agent
- Change binder source
- Adjust dust to binder ratio
 - P200 needs to be clean
 - Sieves #4 & #8 not that important
- Change aggregate type or sand being used

Resource - Procedure

http://www.ucprc.ucdavis.edu/PDF/UCPRC-RR-2017-12.pdf

Challenges During Production

- Variability
 - Changes in stockpile materials
 - Binder source changes
 - Plant variability
 - Load-out procedure
 - Sampling practice
 - Test specimen fabrication
 - Test variability

CTindex Variability

Design CTindex < Threshold + Single-operator d2s

• increases risk of failure during production

90

		Number (%) of 14 Mixes		
	Mix	Exceeding d2s Boundaries		
S.		Single Operator	Multi-laboratory	
	L-J	11 (78.6%)	1 (7.1%)	
	H-J	9 (64.3%)	1 (7.1%)	
	0-C	2 (14.3%)	0 (0.0%)	
	O-F	3 (21.4%)	0 (0.0%)	
	L-C	1 (50.0%)	1 (50.0%)	
	H-C	2 (100%)	0 (0.0%)	
	L-F	2 (100%)	1 (50.0%)	
	H-F	0 (0.0%)	0 (0.0%)	

Other Resources

- Balanced Mix Design (BMD) Resource Guide
 - https://www.asphaltpavement.org/expertise/engineering/ resources/bmd-resource-guide
- NCAT Balanced Mix Design Resources
 - https://www.eng.auburn.edu/research/centers/ncat/educ ation/bmd.html

We bring innovation to transportation.

