Sustainable and Resilient Pavements – Research in West Virginia James Bryce, Ph.D., Austin Jarrell West Virginia University December 6th, 2023

Asphalt Pavements Research at WVU

Michigan Department of Transportation

Turner-Fairbank Highway Research Center

Discover America's Story: The National Parks PLAN YOUR VISIT LEARN & EXPLORE GET INVOLVED

Today's Discussion

- Sustainability
 - Impact of pavements on the environment

Resilience

 Impact of environment on pavements

PAVEMENT RESILIENCE: STATE OF THE PRACTICE FHWA-HIE-23-006

Sustainability – Climate Challenge

Background / Objective

FHWA Highlights Actions to Tackle Climate Change with New Programs and Historic Funding Under President Biden's Bipartisan Infrastructure Law

Friday, April 22, 2022

FHWA 13-22 Contact: <u>FHWA.PressOffice@dot.gov</u>⊠ Tel.: (202) 366-0660

- Pavements contribute significant environmental impacts
 - Lifecycle assessment (LCA)
 - Product category rules (PCRs)
 - Environmental product declarations (EPDs)
- Objective is to use LCA, PCRs and EPDs to investigate activities to improve the overall environmental sustainability of asphalt mixes in WV.

Process

Source: FHWA Sustainable Pavements Program

Sustainable Pavements:

- Achieve the engineering goals.
- Preserve and (ideally) restore surrounding ecosystems.
- Use financial, human, and environmental resources wisely.
- Meet basic human needs such as health, safety, equity, employment, comfort, and happiness.

Source: FHWA Sustainable Pavements Program

LCA/EPD West Virginia Pavements

- Gathered materials and JMFs from 8 mixes from 5 producers around the state
- Build LCA
 - Compared to EPDs from Emerald Eco-Label
- Lab work

								-	WVD	OH M	CS&T	Appr	oval	4
									Recommer	ided for	Approval:			
T400SP									P. Cy	rus				
04-10									Approved i	By:	all's			
			JOB M	WES	T VIRGINIA	DIV	ISION	OF HIC	HWAY	S	03/14/20	18		
Report N	lumber	r:		146	2124	1	Date Ac	Cented:	1-1WIA	ASFI	M	arch 6	2018	
HMA Type:				9.5 mm-RAP			HMA Code: 401.002.010							
Producer:			We	a Paving, Inc	ng, Inc Plant Location:			Dunbar, WV						
Designe	d By:		Jaso	n Frame	Llack Withrow		Design	Lab:			WV Pa	wing-D	lunbar,	wv
Plant Ty	/pe:			Drum			Plant Make: ASTEC					133-1		
Plant Co	de:			WVP1.0	02.400	0 Design ESALs				3 to < 30 million				
					MIX	CON	POSIT	ION						_
	Coar	se Ag	gregate Sour	Code		Fine Ag		Aggregate Source					Code	
CA ₁		Carme	use Lime-Maysv	ille, KY	CLC1.03.7	'04	FA ₁	M	ulzer Ston	e-Cape	Sandy, If	4	MCS	.01.704
CA ₂	1				-		FA ₂	FA2 Mulzer Stone-New Amsterdam, IN MCS2			.03.704			
CA ₃				_			FA ₃						IAD/D	02 400
CA4					1		FA4	-	Bagh	Iouse F	ines	-	WVP	EA.
		1	CA,	CA	CA3		CA4		FA ₁	F	A2		43	1.04
Ann. Ty	ne		#8 Limestone			100		0	(W)	#10	(W)			BHF
Ann Cr	de	-	703 004 008			-	and the second	702.	003.001	702.00	3.001			702.003.0
% Total	Aga.	-	40	1.1.1		-			29	-	15			1
A RAP 1	Total A	00.		15.0	Blei	nded	Binder	G*/sin de	Ita if > 2	5% RA	P:		3.9.9	100
% Binde	r In PA	P Des	ian:	5	3	Bind	ar Type	: 1	PG 64S-2	2 1	Binder (ode:	705.0	05.008
Binder	Source		1	Shelly L	iquid Division-	Kanau	Iga, OH	12	Bir	nder S	ourceCo	de:	SLD	.01.705
unider	oouree			Sieve	Eraction		-	Carls Th		Ein	es/Effectiv	re		Tensil
		-		oble	Ciouo Allowable Asphalt Ratio		It Ratio	51	Strn. Ratio					
Sieve			Min	Max	Size	T	arnet	Min.	Max.		1.0		1	85.2
Size		Targe	t min.	mox.	WA (4 TH com)		R4		90	-	Ten	nperat	ure R	inge
2" (50 m	m)	-	-		WB (t 16 mm)		39	33	45		Com	leted	Mixtu	re (*F)
.5" (37.5m	nm)	-	_	-	#16:119 mm	- 1	25			0	esirable		Ter	p. Rang
1" (25 m	m)	-			#30 (200 um)	-	17		1	Me	an Tem	p.	Min.	Map
3/4- (19 m	mm)	400	100	100	#50 (800 pm)	-	11	1000	1000					
1/2 (12.5)	mm)	100	- 100	100	#200(75 um)	-	5.0	2.0	.10.0	-	312	-	287	33
210 (9.51	2600)	31	00	100	JOB MIX	FO	RMULA	VALUE	S	2.		11		
_		-	and the second second	-	Job Inte	Mix	ormula		Je	ob Mi	x Form	ula 1	olera	ices
11141			Dealers 6	Ironortu	Det	lan	Targets	7	Mir	imum		1	Ma:	kimum
Specific	gravity s	tone	Design	- roperty		0	2	-		5.8				6.6
Maximum		.834	Aspna		4.0		0		28			5.2		
			Air Voi					15.0		1				
Density (kg/m ³)		n')	VMA		75.0		74		-	80				
2	457	-	VFA		10.0						-	00		
	Nenipe	-	80 Desira	bie Mean T	emp. for Lab. Spec	imens	(*F):	-	Comp. Te	smp.:	293	1 400	ng témp	31
rrations (E					the second se									

GWP from reviewed Emerald Eco-Label HMA mix EPDs

HMA Global Warming Potential (GWP-100) Per US Short Ton

LCA Benchmarking Tool

- Publicly available LCA tool
 - Training videos
 - Documentation

Available at: https://www.fhwa.dot.gov/pavement/lcatool/

Also used OpenLCA as comparison – results were similar and not discussed here LCA Pave: A Tool to Assess Environmental Impacts of Pavement Material and Design Decisions

User Manual

U.S. Department

of Transportation Federal Highway Administration

- Hand calculations for GWP values from materials based on their impact indicators:
 - Binder with no additives: (578*0.051) = 29.5 kg CO2 eq
 - RAP: (1.26*0.14235) = 0.18 kg CO2 eq
 - Aggregates: (#8 2.06*0.4745)= 0.98 (Natural 4.2 *0.14235)= 0.59787 (Manufactured 4.2*0.18031)= 0.757 (BHF 4.2*0.00949)= 0.0399 = 2.37 kg CO2 eq
- Which makes the total GWP for materials: 32.03 kg
 CO2 eq per short ton

- Adjusted transportation calculations:
 - #8 (0.4745*307.44)= 145.88 & (0.0189*0.4745)= 0.00897
 GWP: (145.88*0.0538)+(0.00897*0.1008)=7.85 kg CO2 eq
 - (M) (0.1803*307.44)= 55.43 & (0. 1803*0.0189)= 0.00341
 GWP: (55.43*0.0538)+(0.00341*0.1008)= 2.99 kg CO2 eq
 - (N) (0.14235*635.31)= 90.44 & (0.14235*0.0189)= 0.0027
 GWP: (90.44*0.0538)+(0.0027*0.1008)= 4.87 kg CO2 eq
- Binder (0.051*19.6)= 0.9996 GWP: (0.9996*0.2264)=
 0.23 kg CO2 eq
- Total GWP for (A2) = 15.93 kg CO2 eq

- Energy and mixing operations
 - Broken down into energy consumption, natural gas combusted in an industrial boiler, and diesel combusted in industrial equipment
- This makes the total hand calculation GWP 3.8742 kg CO2 eq + 13.527 kg CO2 eq + 0.442 kg CO2 eq = 17.84 kg CO2 eq

- Using the LCA Pave Tool library impact indicators for hand calculations the overall GWP is 65.8 kg CO2 eq (151 lbs)
- A1 materials 32.03 kg CO2 eq; A2 Transportation 15.93 kg CO2 eq; A3 Production 17.84 kg CO2 eq

LCA Results – WV Mixes

LCA PaveTool Results

Mix Design

Issue with mixing operations

- In LCA Pave Tool...
 - Assuming same mix, but classifying it as "Marshall" vs "Superpave" results in significantly different results
 - e.g., from 47 to 35 kg CO2 eq/US short ton
- According to FHWA, "Marshall" vs "Superpave" was intended to be a classifier...not to be used with different mixes at the same plant

Binder with Polymer vs. None

- From LCA Pave tool, GWP per 1 short ton using asphalt binder with no additives is 86.16 kg CO2 eq
- GWP per 1 short ton with polymer additives is **75.89** kg CO2 eq

Sensitivity to Using Polymer-Modified Binder

For the sensitivity analysis, SBS was used as a polymer. The inventory used (Boustead & Cooper, 1998) does not meet the any data quality requirements, as it is more than 5 years old, and the source is not publicly available for use. However, the inventory was used to test the sensitivity of the asphalt binder impacts when modified by polymers such as styrene-butadiene-styrene (SBS) and polybutadiene. The differences in the GWP indicator for the different polymer-modified binders are illustrated in Table 8. It is expected that as the Asphalt Institute develops a detailed LCI for asphalt binder, this LCA will be modified to reflect the most recent outcomes, including the impacts of polymer modification.

Table 8: Difference in GWP for Polymer-Modified Binder and Mix (per ton)

	GWP (kg of CO ₂ eq)	Difference
Liquid Binder in Refinery	390.20	
Polymer-Modified: SBS	494.81	27%
Polymer-Modified: Polybutadiene	498.40	28%
Mix 1: Virgin materials, 5% Binder	58.59	
Polymer-Modified Mix 1	63.82	9%
Mix 2: 15% RAP, 3% RAS, 4.2% Binder	35.89	
Polymer-Modified Mix 2	40.29	12%

Upcoming Tasks

Resilience – Modeling Future Temperatures

Definition: Resilience

- 1. Ability to anticipate, prepare for, and adapt to changing conditions
 - Gradual changes in frequency and intensity of climate stressors
- 2. Withstand, respond to, and recover rapidly from disruptions
 - Extreme events that are very disruptive

Source: Adapted from FHWA Order 5520

Stationary vs. Non-stationary

- Stationary:
 - Observed data = future climate

- Non-stationary:
 - Observed data ≠ future climate

Image Source: IPCC AR6 WG1

MEPDG & LTPP Bind Climate Consideration

• MEPDG predicts *temperature* and moisture content in pavement layers

- *Method:* Built-in EICM
 - 1. Energy balance pavement surface
 - 2. Heat transfer pavement profile

Given uncertainties in pavement temperature prediction, are changes in temperature due to climate change statistically significant?

Given those same uncertainties, are the differences between two downscaling methods statistically significant?

Data and Sites

- 20 LTPP SMP sites from around continental US
 - Selected because measured temperatures available

State	SHRP- ID	Thermistor Range	Future Projection Period	50° N
AL	01-0101	11/17/1997 -	11/17/2042 -	MALL SPALES
		11/1//1998	11/17/2043	40 N
ME	22 1026	10/15/1996 -	10/15/2041 -	
	20-1020	10/15/1997	10/15/2042	
NV	22.0101	1/1/2000 -	1/1/2045 - 1/1/2046	
	52-0101	1/1/2001		
OK	40 4165	3/29/1994 -	3/29/2039 - 3/29/2040	
	40-4100	3/29/1995		No W
TX	49 1000	1/1/2000 -	1/1/2045 - 1/1/2046	120° W 10 10 10 10 10 10 10 10 10 10 10 10 10
	40-1060	1/1/2001		110°W 100°W 90°W

Variations in Average Annual Maximum Air Temperature

Future Climate

- CMIP RCP 6.0 (VA example \rightarrow)
- 20-year hourly temperature predictions
 - Historical and historical plus 45 years
- Two downscaling methods
 - Delta Method (Meagher et al. (2012))
 - Asynchronous Regional Regression Model (ARRM) (2019)

WestVirginiaUniversity.

Extreme Temperature Threshold (99th Percentile Temperatures)

Differences in Downscaling Methods

• Delta method

linginiaUniversity.

- Scale daily minimum and maximum temperatures using CMIP data and calculate intermediate temperatures
- ARRM
 - Sophisticated approach that minimizes biases inherent in other approaches

Comparing Downscaling Methods

State	Daily Maximum	Daily Minimum		
State	Temperature	Temperature		
AL	h=1	h=0		
ME	h=1	h=1		
MN	h=0	h=0		
NV	h=1	h=1		
OK	h=1	h=1		
TX	h=1	h=1		
VA	h=0	h=0		
WY	h=1	h=1		

h=1 means likely from different distributions

Observed and Future Predictions

WestVirginiaUniversity.

Observed and Future Predictions

Observed and Future Predictions

WestVirginiaUniversity.

Wrap up

- Conducted LCA of several mixes in WV
 - Some unexpected results when using FHWA LCA Pave
 - Will inform recommendations for reducing carbon footprint of mixes
- Pavement resilience includes robust designs for mitigating the effects of climate change
 - How do we consider this in design and management?

Thank you for your kind attention!

Questions and Discussion?

James.Bryce@wvu.edu

