Thick Lift Asphalt Paving

Dr. David Timm, P.E.

2023 Mid-Atlantic Asphalt Expo & Conference

Background – Multi Lift Paving

Background – Thick Lift Paving

- Asphalt pavements typically built in lifts
 - ▷ Usually <3" thick</p>
 - ▷ Tack between layers
 - Different mixes in each layer

- ▷ Long work zones with traffic on intermediate layers and uneven lanes
- Traffic demands and work zone scheduling, SCDOT has been moving toward single, thick lift paving (5+ inches)

Thick Lift Paving Advantages

- Shorter work zones
 - ▷ Both time and distance
- No lift interfaces
 - Prevents interface shear failure
- No uneven lanes

http://www.worldhighways.com/_resources/assets/inline/custom/73/100641.jpg

- Open new pavement to traffic almost immediately
- Can be accomplished on any schedule
 - ▷ Off peak
- SCDOT aiming for greater depths (7+ inches)

Key Questions

- Cooling
 - ▶ How long will it take thick mat to cool before opening it to traffic?
- Compaction
 - Can density be achieved throughout pavement depth?
- Structural Response
 - ▷ Thick lift pavement relative to conventional multi-lift pavements?
- Performance
 - ▶ How does a thick lift pavement perform relative to conventional multi-lift pavements?

NCAT Test Track

Section S9 – 8" AC over Granular Base

S9 - Asphalt Mix Design

- "Type B Intermediate Special"
 - ▷ Rehabilitation Repairs, Interstates, High Volume Primary Routes
- 12.5 NMAS
- PG 64-22 with 25% RAP
- WMA (Evotherm M1 @ 0.5%)
 - ▷ Mixing @ 275-280F
 - ▷ Compaction @ 245-250F
- Design Air Voids = 2.5%
- N_{des} = 75
- Asphalt Content = 5.75%
 - ▷ 4.37% Virgin
 - ▷ 1.38% RAP

Construction

Construction

Embedded Temp Probe During Paving

Temperature Monitoring

In Situ Cooling Curves

Surface vs In Situ Monitoring

In-Place Density

S9 Post-Construction Grinding

Post Construction – Ride Quality

Performance

Ride Quality (IRI)

Rutting

Cracking

Tensile Strain Measurements

Backcalculated AC Modulus

Key Findings

- Time of day has strong influence on cooling rate
- MultiCool is most accurate over short durations & needs some improvement
- Cooling may be significantly longer than measured at surface
 - Recommend thermocouple probe inserted at mid-depth to monitor in real-time
- Adequate in-place density was achieved
- Precision grinding needed to achieve acceptable IRI at Track (SCDOT reporting 50 in/mile achievable)
- Good performance
 - ► IRI decreasing over time
 - ▶ Rutting < 0.3" @ 17.5 MESALs
 - ► Limited cracking
 - Strain and backcalculated modulus indicate healthy section
- Behaves like conventional multi-lift section, without lift interfaces
- Continue monitoring into next test cycle

Questions? timmdav@auburn.edu

